博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
ubuntu16.04环境下安装配置openface人脸识别程序
阅读量:6857 次
发布时间:2019-06-26

本文共 4607 字,大约阅读时间需要 15 分钟。

参考http://blog.csdn.net/weixinhum/article/details/77046873

最近项目需要用到人脸训练和检测的东西,选用了OpenFace进行,因而有此文。

  本人主要参考了下面的这两篇博客:

  

  

  如有雷同,绝非偶然。

  1.python

   Ubuntu 16.04桌面版自带python

  2.git

$ sudo apt-get install git
  • 1

  3.编译工具CMake

$ sudo apt-get install cmake
  • 1

  4.C++标准库安装

$ sudo apt-get install libboost-dev$ sudo apt-get install libboost-python-dev
  • 1
  • 2

  5.下载OpenFace代码

$ git clone https://github.com/cmusatyalab/openface.git
  • 1

  6.OpenCV安装

$ sudo apt-get install libopencv-dev$ sudo apt-get install python-opencv
  • 1
  • 2

  7.安装包管理工具pip

$ sudo apt install python-pip
  • 1

   更新pip,按上面安装不知道为什么是旧的版本,可能影响下面的操作

$ pip install --upgrade pip
  • 1

  8.安装依赖的 PYTHON库

$ cd openface$ sudo pip install -r requirements.txt$ sudo pip install dlib$ sudo pip install matplotlib
  • 1
  • 2
  • 3
  • 4
  • 5

  9.安装 luarocks—Lua 包管理器,提供一个命令行的方式来管理 Lua 包依赖、安装第三方 Lua 包等功能

$ sudo apt-get install luarocks
  • 1

  10.安装 TORCH—科学计算框架,支持机器学习算法 

$ git clone https://github.com/torch/distro.git ~/torch --recursive$ cd torch $ bash install-deps $ ./install.sh
  • 1
  • 2
  • 3
  • 4

   使 torch7 设置的刚刚的环境变量生效

$ source ~/.bashrc
  • 1

  这里只安装了CPU版本,后面如果需要再更新CUDA的使用方法

  11.安装依赖的 LUA库 

$ luarocks install dpnn
  • 1

   下面的为选装,有些函数或方法可能会用到

$ luarocks install image$ luarocks install nn$ luarocks install graphicsmagick$ luarocks install torchx$ luarocks install csvigo
  • 1
  • 2
  • 3
  • 4
  • 5

  12.编译OpenFace代码

$ python setup.py build$ sudo python setup.py install
  • 1
  • 2

  13.下载预训练后的数据

$ sh models/get-models.sh$ wget https://storage.cmusatyalab.org/openface-models/nn4.v1.t7 -O models/openface/nn4.v1.t7
  • 1
  • 2

 ————————-到此配置完成,下面是简单的例子————————-

  可以用compare.py(demo文件夹中)给出的示例检测两张脸的相近程度。

$ python demos/compare.py {
3.jpg*,4.jpg*}
  • 1

  1.jpg

这里写图片描述

  2.jpg

这里写图片描述

  3.jpg

这里写图片描述

  4.jpg

这里写图片描述

  结果如下

这里写图片描述

  可以看到,相同人物之间的距离明显比不同人物要小。

注:在运行时,最好加上图片路径(将需要测试的图片上传到images文件夹)

python demos/compare.py ./images/{1.jpeg*,2.jpeg*}

上传命令:

scp 1.jpeg yanjieliu@192.168.1.139:/home/yanjieliu/opt/openface/images/

 

  另外也可以像开始提到的参考文章中一样,写一个检测人脸的程序进行检测,名称为face_detect.py,代码如下:

import argparseimport cv2import osimport dlibimport numpy as npnp.set_printoptions(precision=2)import openfacefrom matplotlib import cmfileDir = os.path.dirname(os.path.realpath(__file__))modelDir = os.path.join(fileDir, '..', 'models')dlibModelDir = os.path.join(modelDir, 'dlib')if __name__ == '__main__':    parser = argparse.ArgumentParser()    parser.add_argument(        '--dlibFacePredictor',        type=str,        help="Path to dlib's face predictor.",        default=os.path.join(            dlibModelDir,            "shape_predictor_68_face_landmarks.dat"))    parser.add_argument(        '--networkModel',        type=str,        help="Path to Torch network model.",        default='models/openface/nn4.v1.t7')    # Download model from:    # https://storage.cmusatyalab.org/openface-models/nn4.v1.t7    parser.add_argument('--imgDim', type=int,                        help="Default image dimension.", default=96)    # parser.add_argument('--width', type=int, default=640)    # parser.add_argument('--height', type=int, default=480)    parser.add_argument('--width', type=int, default=1280)    parser.add_argument('--height', type=int, default=800)    parser.add_argument('--scale', type=int, default=1.0)    parser.add_argument('--cuda', action='store_true')    parser.add_argument('--image', type=str,help='Path of image to recognition')    args = parser.parse_args()    if (None == args.image) or (not os.path.exists(args.image)):    print '--image not set or image file not exists'    exit()    align = openface.AlignDlib(args.dlibFacePredictor)    net = openface.TorchNeuralNet(        args.networkModel,        imgDim=args.imgDim,        cuda=args.cuda)    cv2.namedWindow('video', cv2.WINDOW_NORMAL)    frame = cv2.imread(args.image)      bbs = align.getAllFaceBoundingBoxes(frame)    for i, bb in enumerate(bbs):    # landmarkIndices set  "https://cmusatyalab.github.io/openface/models-and-accuracies/"        alignedFace = align.align(96, frame, bb,                                      landmarkIndices=openface.AlignDlib.OUTER_EYES_AND_NOSE)        rep = net.forward(alignedFace)        center = bb.center()        centerI = 0.7 * center.x * center.y / \                (args.scale * args.scale * args.width * args.height)        color_np = cm.Set1(centerI)        color_cv = list(np.multiply(color_np[:3], 255))        bl = (int(bb.left() / args.scale), int(bb.bottom() / args.scale))        tr = (int(bb.right() / args.scale), int(bb.top() / args.scale))        cv2.rectangle(frame, bl, tr, color=color_cv, thickness=3)    cv2.imshow('video', frame)    cv2.waitKey (0)      cv2.destroyAllWindows()
View Code

 

转载于:https://www.cnblogs.com/vactor/p/8608760.html

你可能感兴趣的文章
Hibernate 分页时 Long 无法转化成Integer类型 异常
查看>>
鸡和蛋的OO设计
查看>>
XML中SystemID和PublicID的区别
查看>>
windows 下查看端口占用情况
查看>>
Thread源码分析
查看>>
左值、右值与右值引用
查看>>
狮入羊口
查看>>
C++容器类的简介
查看>>
RHEL6 某业务用户ulimit -a命令找不到
查看>>
oracle定时任务
查看>>
Chrome 错误代码:ERR_UNSAFE_PORT
查看>>
spring mvc4的日期/数字格式化、枚举转换
查看>>
阿里云服务器mysql修改编码问题
查看>>
算法生成N芒星
查看>>
StringTokenizer类的使用
查看>>
下载安装tomcat6.0
查看>>
基于正则的INI读写工具类,支持加密解密
查看>>
java中的native关键字
查看>>
Live555类结构
查看>>
java:快速文件分割及合并
查看>>